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A method is presented for the numerical solution of the transient, low Reynolds 
number flow of incompressible fluids with free surfaces. The usual numerical stability 
restrictions related to the viscous diffusion coefficient are avoided by an implicit differ- 
encing scheme. The properties of the method are illustrated by several calculational 
examples. 

There exist many fluid flow problems of practical importance in which the 
viscous forces are dominant. In a few special cases it is possible to obtain analytical 
solutions, usually by omitting the nonlinear inertia terms from the full Navier- 
Stokes equations [l]. However, there are many important problems for which 
it is impossible to obtain an adequate solution. 

Several numerical techniques have been developed for the solution of viscous, 
incompressible flow problems. A few are listed in Refs. [2] and [3]. These methods, 
however, apply principally to problems for which the inertial forces are larger 
than the viscous forces, i.e., the Reynolds number (E LU/v) > 1. Here L and U 
represent a typical dimension and velocity of the flow, and v is the kinematic 
viscosity. Due to limitations related to numerical stability restrictions these 
methods cannot be efficiently applied to flow problems ‘for which Re < 1.0. 
This paper describes a technique that has been developed to investigate incom- 
pressible flow in this Reynolds number range. It has been developed as an extension 
to the Marker-and-Cell (MAC) method [3], and is called the MACRL technique. 
Since the full Navier-Stokes equations are used, MACRL applies equally well to 
flow problems in the intermediate Reynolds number range. In this way, MACRL 
extends the applicability of MAC to such slow flows as continental drift, glacier 
flow, and lubricant flow. 

* This work was performed under the auspices of the United States Atomic Energy Com- 
mission. 
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A previous extension of this type by Hung [4] was developed for confined 
flow calculations. His objective was to achieve complete time centering rather 
than to extend the technique to low Reynolds numbers. Accordingly he did not 
require an implicit formulation of the boundary conditions, such as the present 
technique has been found to require. 

The lower limit, Re w 1, on the flow Reynolds number for explicit finite- 
difference techniques is related to the numerical stability requirement 

vst 1 
sx2 < ;? ’ 

where St is the time step per calculation cycle and 6x is the finite-difference cell size. 
To demonstrate a consequence of this limit, we can rewrite Eq. (1) as 

(4N) (G) < Re, 69 

where N = L/ax.- Condition (2) can be satisfied for low Reynolds number problems 
by choosing an appropriately small St. However, for efficiency, St should be 
chosen so that the fluid moves about half a mesh interval per time step, i.e., 
U&/8x B l/2. Condition (2) can then be expressed as a measure of the smallest 
Reynolds number that can be efficiently calculated for a given number of cells 
across a typical dimension of the problem, 

Re > 2N. (3) 

To illustrate how the MACRL technique overcomes this restriction, we may 
contrast the stability properties of two finite-difference approximations to a 
simple one-dimensional diffusion equation, 

(5) 

where ui” denotes @6x, n St). The equations differ in the time level of the U’S 
on the right sides. Equation (4), which is analogous to the MAC method, employs 
u’s evaluated at cycle number n. In Eq. (5), however, they are time-advanced as 
in MACRL. 

A simple stability analysis shows that the restriction for Eq. (4) is v 6+3x2 -C l/2, 
while Eq. (5) is stable for all values of v, St, and 6x. To solve the implicit coupled 
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Navier-Stokes equations analogous to Eq. (5) requires a rather lengthy numerical 
procedure, but this is mitigated by the larger allowable at. It is this type of implicit 
finite-difference approximation to the Navier-Stokes equations that makes practical 
the solution of low Reynolds number problems. 

To incorporate this into the MAC method, however, has required several basic 
modifications to the technique. The modifications are (1) An implicit finite- 
difference approximation of the viscous terms in the momentum equations, 
(2) a revised formulation of the free surface boundary conditions, and (3) a new 
iterative procedure for solving the equations. 

Like MAC, the MACRL method is a finite-difference technique for solving 
the full, time-dependent Navier-Stokes equations, together with the incom- 
pressibility condition. We use these equations in the following form: 

au 
at= -v * (uu) - v$b - vv x (V x u) + g, (6) 

v*u =o, (7) 

where u is the velocity, g a body force, and 4 is the ratio of pressure to constant 
density. These equations are solved numerically with the aid of a network of 
fixed rectangular cells. To obtain a solution, the fluid configuration is advanced 
successively through a series of small time increments St. 

In addition to advancing the set of flow variables each cycle, the coordinates 
of a set of massless particles are updated. Just as in MAC, these marker particles 
are initially distributed throughout the fluid and are moved each cycle with the 
local fluid velocity. These particles aid in flow visualization and serve to keep 
track of the changing position and orientation of the free surface. 

METHOD OF SOLUTION FOR CONFINED FLOW 

From Eq. (6) the following finite-difference approximations can be derived, 
in which the viscous terms are written in the same manner as Eq. (5), 

?I+1 n 
%,1/2.~ - ui+1/2.j = (u")L - (U2)F+1.i 

St 6x 
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The difTerenced momentum equations (8) and (9) can be combined to give the 
following equation for the rate of change of D: 

+ 6 PG#X;1 - G#X% - (M?II - <QX, > (11) 

where 

QL sic & Nu33”+1,, - 2(u2% + <u")L.J 

+ & I@"%+1 - 2vxtj + <~3LIl WI 

+ 6x sy 2 [(u~Xil/2,i+1/2 - CuuX--1/2,i+1/2 - WL/2*i-I/2 + WLl2.i-I/21. 

The subscripts i and j refer to cell locations, x = i 6x, y = j 6y, while the superscript 
n counts time cycles, t = n 6t. Cell centers are designated by integer values of i 
and j; cell edges by half integer values, as i f + and j f 4. Figure 1 illustrates 
the location of the field variables. 

These equations form the basis of the MACRL method. To solve them, we 
assume that the field variables are available at the beginning of a cycle, either as 
a result of the previous cycle of calculation or as specified initial conditions. 
The objective of the solution for each cycle is to obtain a set of pressures that 
can be inserted into the momentum equations for the calculation of new velocities 

581/7/l-4 
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FIG. 1, Field variable placement in a calculation cell. 

such that IIT,:1 = 0 for every cell. Accordingly, with IIT,;1 = 0 in Eq. (1 l), that 
equation becomes an implicit expression that can be solved for the pressures. 
Allowing for slight inaccuracy in the previous cycle solution, the values of DEj are, 
however, retained in Eq. (ll), giving the corrective procedure that has been 
discussed previously [5]. 

Due to the implicit form of the viscous and pressure terms in Eqs. (8) and (9) 
and the implicit nature of Poisson’s equation, Eq. (1 l), we have three sets of 
coupled, simultaneous equations to solve at each time step. This is true despite 
the apparent completeness of Eq. (11) for the solution of the new-time pressures. 
The reason for this is that the boundary conditions on #I are expressed in terms 
of derivatives of the velocities, which, for consistent implicit treatment, must be 
the end-of-cycle velocities. As shown in Eqs. (8) and (9), however, these in turn 
depend upon the new-time pressures, thereby coupling all of the equations together. 
To see this specifically, consider the boundary conditions on the pressure for the 
case of a rigid, no-slip wall on the left side of the computing mesh. The boundary 
conditions there are that the tangential velocity, a, and the normal velocity, U, 
vanish at all times. From Eq. (8), this means that (see Fig. 2) 

vi-1.5+1/a = -Z'i.f+lh 

and 

(13) 
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FIG. 2. Variables near a no-slip rigid wall. 

If the n-time velocities had been used in Eq. (13), then the pressures and velocity 
equations would not be coupled together, but numerical experiments with this 
have shown that such an explicit boundary treatment introduces intolerable 
numerical instabilities at the walls. 

Each calculation time step or cycle is based on the following sequence of events: 

(1) The velocities and pressures for each calculational cell are made available 
either from initial conditions or the preceding cycle. Also the coordinates of the 
marker particles are available. 

(2) The D or discrepancy term, Eq. (IO), is calculated from the n-time 
velocity field. Convection terms and Qz,j , Eq. (12), are calculated for use in the 
iteration that is to follow. 

(3) Equations (8), (9), and (11) are solved simultaneously by an iteration 
technique in such a way that the new-time velocity divergence, D$, is everywhere 
zero. This iteration procedure produces the advanced time (n + 1) pressures 
and velocities for every cell. 

(4) All marker particles are moved according to a local average of the 
velocities nearest each particle. 

(5) Necessary bookkeeping chores are performed and output in the form 
of field variable prints or marker particle configuration plots can be accomplished 
if desired. 
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The solution of the set of simultaneous equations required in Step 3 can be 
accomplished by the use of a Gauss-Seidel or Liebman relaxation procedure. 
The convergence rate and efficiency of this iterative solution depends upon the 
form chosen by the user, and would vary considerably with circumstances. The 
process used in MACRL is to solve these equations for each cell, each iteration. 
When, for example, we solve these equations for cell (&j), we first solve Eq. (1 l), 
in which DF,$l is set to zero, for 4i,j, next Eq. (8) for u~+~,,~,$ , and finally Eq. (9) 
for vi,j+112 ; then advance to cell (i + 1,j) and repeat the process. 

It has been found that for problems where Re << 1, an additional procedure 
should be incorporated into each iteration in order to insure continued conserva- 
tion. This procedure, which is described in detail in Ref. [6], requires the introduc- 
tion of a potential function and a second iterative process. This can then accomplish 
accurate conservation with considerable efficiency. 
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FIG. 3. Sample mesh showing variables needed for three surface cell orientations. 
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METHOD OF SOLUTION FOR FLOWS WITH FREE SURFACE 

The presence of a free surface in incompressible flow problems complicates 
the solution technique in several ways. First, a means for recording the changing 
position and orientation of the free surface is necessary in order to impose the 
boundary conditions properly. This is accomplished in MACRL in the same 
way as in the MAC technique, i.e., by means of a set of marker particles that 
move with the local fluid velocity. These particles indicate which Eulerian cells 
contain the surface. These cells require special treatment. 

The second complication is incorporating the free surface boundary conditions 
in a consistent implicit manner. The conditions to be satisfied are that the normal 
and tangential stresses at the surface vanish. A more complete discussion of the 
free surface stress conditions can be found in Ref. [7] so that only the calculation 
changes made necessary by the implicit solution procedure of MACRL need be 
discussed here. 

Each calculational step consists of the same sequence of events for all full cells 
as described in the preceding section. The principal difference here is in the equa- 
tions used for surface cells. 

A sample free surface configuration is shown in Fig. 3. A full cell, labeled F, 
is one that contains fluid but is not adjacent to an empty cell, labeled E. Surface 
cells are labeled S. The variables to be found in these cells are indicated in the 
figure for three possible surface cell orientations; top side open to vacuum, right 
side open to vacuum, or both top and right sides open. 

For surface cells which have one side open to vacuum, the normal stress condi- 
tion can be written 

4,w = 2v g-)> 

and the tangential stress condition is 

( 
au, aurn v-+x=, am 1 

0 

(14) 

where $,,, refers to the value of 4 in the surface cell, n refers to the outward 
normal direction of the free surface (assumed perpendicular to the open side), 
and m to the tangential direction. 

For the spectic case of a surface cell (zJ) having its top side open to an empty 
cell at (i,j + $), condition (14) becomes, in implicit finite-difference form, 
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Equation (16), Eq. (8), and the condition Di,j = 0 can be manipulated into an 
expression with the unknown u’s and $‘s eliminated. The resulting equation 
can be solved for the velocity on the right side of the cell, using results from the 
previous iteration for the unknown quantities on the right. In this case, we write 

where 5 = 1 + (6~ &/6x2) + (2~ 6t/Sy2) and 

The velocity at the open side, v~,~+~/~ , then follows uniquely from the condition 
Di,, = 0. Finally, Eq. (16) is solved for $T,$l. In addition to the velocities on the 
sides of the surface cell, the calculation requires the velocities of the adjacent 
empty cell (Ui+l12,f+l in Fig. 3). This can be determined from the finite-difference 
approximation to the tangential stress condition, Eq. (15), 

The equations for a surface cell with its right side open to an empty cell (i + &,j) 
are similarly derived. In this case, the expression for the velocity on the top side 
of the cell is 

St 
[ 

n 
9Z+1 

vi.j+1/2 = - 
5 

vc;*j + g, + z!dp 

where 5 z 1 + (6~ St/Sy2) + (2~ h/6x2) and 

n 
VCj*J = 

(v2X.j - VX.j+l + (uvX-l/2.j+1/2 - (uv)i"t112.j+1/2 

SY 6x 

Again the condition Dtwj = 0 can be used to determine the velocity at the 
open side. The normal stress condition is then solved for 47,:‘. In finite-difference 
form it is 

(20) 
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The velocity of the adjacent empty cell is found from the expression 

Surface cells with two adjacent sides open to vacuum are treated somewhat 
differently. For these cases we require that au/ax and av/ay vanish separately in 
order to simultaneously satisfy both the tangential stress condition (for a diagonal 
surface) and the vanishing of Di,, . This is accomplished by setting each of the 
open side velocities equal to the velocity at ,the opposite side. 

In this case we need the velocities of both adjacent empty cells. These are also 
chosen to satisfy the vanishing tangential stress condition. The u velocity on the 
right side of the empty cell above is set equal to the u velocity of the left side of 
that cell. The v velocity at the top side of the empty cell on the right is set equal 
to the v velocity of the bottom of that cell. The pressure in a cell with two open 
sides is set equal to zero. Other possible ‘one and two open-sided configurations 
are treated in a similar fashion. 

Surface cells with three sides facing vacuum occur relatively infrequently. 
For these, the velocity at the open side opposite the fluid is set equal to the velocity 
at the fluid side; the other two sides are calculated to follow freely the effects of 
body force and to insure that Di,j = 0. Cells with all four sides open are treated 
to allow for motion due to body forces only. 

SAMPLE APPLICATIONS 

A discussion of the results of several calculational examples best illustrates 
the new features of the MACRL technique. The examples chosen include unsteady 
two-dimensional flow in a square cavity, and the creeping motion of a highly 
viscous block of tar. 

In the first example, fluid initially at rest in a square cavity is set into circulatory 
motion within the cavity by a boundary moving in its own plane at the top. 
The several different calculations are characterized by a Reynolds number, 
Re = LUwa&, where L and UWsu are the constant length and velocity of the 
top wall and v is the kinematic viscosity of the fluid. This type of problem is an 
appropriate first application of this new technique for several reasons. First, 
cavity flow has been investigated experimentally and numerically so that useful 
comparisons can be made in order to test the method. Also, since no fluid enters 
or leaves the system, and the flow is entirely confined by rigid boundaries, new 
features of the method can be illustrated with relatively simple boundary conditions. 
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Calculations of the square cavity problem were performed first for Re = 100 
so that comparisons could be made with Donovan’s results obtained with an 
explicit MAC method [8]. In both Donovan’s MAC program and MACRL, 
the full unsteady equations are solved, the principal difference being in the time 
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FIG. 4. Graphs showing the calculated velocity (datum points) in comparison with the 
results of Donovan (solid lines) for (a) horizontal velocity along a vertical traverse through the 
vortex center, (b) the vertical velocity along a horizontal traverse through the vortex center. 

centering of the viscous terms in the finite-difference equations. The two calculations 
show excellent agreement in the position of the vortex center, and in the patterns 
of circulation of the marker particles. Another aspect of the agreement is illustrated 
in Fig. 4a, which shows a late time (steady-state) distribution of x-component 
velocities along a line perpendicular to the moving surface and passing through 
the center of the vortex. The distribution of y-component velocity along a line 
parallel to the moving surface and passing through the vortex center is shown 
in Fig. 4b. 

To illustrate the stability of MACRL under much more stringent circumstances, 
calculations were run with Re = 1.0 and Re = 0.01 using the same time step as 
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in the calculation with Re = 100. For the calculation with Re = 0.01, this gave a 
6400-fold violation of the explicit stability condition given in Eq. (1). 

A comparison of the second and third calculations shows only a slight difference, 
because in both cases the viscous terms are strongly dominant. Figure 5 shows 
the steady-state velocity vector configuration for Re = 0.01. Horizontal velocity 
profiles along a vertical line through the vortex center are shown in Fig. 6, which 

FIG. 5. Steady-state velocity configuration for Re = 0.01, in the square cavity problem. 

compares the MACRL solution to the full unsteady equations for Re = 1.0 
with the results from the steady equations for Re = 0 by Kawaguti [9] and 
Burggraf [IO]. 

The large time step used for the Re = 0.01 problem was chosen primarily 
to demonstrate the stability of the method. To accurately represent the first 
few cycles of the eddy formation would require an extremely small time step. 
It can be shown, however, that as the calculation proceeds, the time step could be 
increased each cycle by a factor proportional to the cycle number. In this way, 
the calculation could efficiently reach the steady solution and at the same time 
resolve accurately the early phases of eddy formation. 
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As a second type of example to exhibit new capabilities of MACRL we calculated 
the slow flow of a fluid having free surface. The example illustrated in Fig. 7 
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FIG. 6. Graph showing comparison of velocity profiles among MACRL at Re = 1.0, 
Kawaguti at Re = 0.0, Burggraf at Re = 0.0 for the horizontal velocity along a vertical traverse 
through the vortex center. 

represents the highly viscous slumping motion that would occur if a rectangular 
block of tar or pitch were placed on a nonslip surface and left undisturbed. Shown 
here is a sequence of marker particle configurations obtained directly from the 
calculation. A thin empty layer next to the bottom boundary can be seen in the 
last two plots. This is a result of the coarse resolution. Since the layer is less than 
one cell thick, each calculational cell in the layer is treated as though it were full 
of fluid. 

In this, as in all incompressible flow calculations, volume or mass conservation 
is necessary for accurate results. A conservation check of the tar block problem 
reveals that Dtei remains negligible for each cell, and the total volume remains 



TRANSIENT CREEP FLOW 59 

r --- ........................... .... .... ...... .................... :::::::;::;::::::.::;:::::::::::::::::::: :::::::,: ::::::::::::: ::::::::::::::::::::::::~~~~:~~~,~~::’
::::::::::il 

..................................... ....... .... ........................... ........ ........ .._....... ......... .................. ........................ ........... ........................ ......................... ..::::.:::. ::.:.::....::::::~~::.~.:: ...... ........................... ........ .... ::,::, ............... .::::::.:::::::::::::::::::::::.:::.:...::.: .: ::..:..::.:.::::.:::.::.:: .............................. ... .......................... ......... : : : ........... : ... : : : : : : : : : : ... : ... :: : ::.,::.:::.:::::,:_:.:: :.: ... ................. 

FIG. 7. Fluid configurations representing the slow flow of tar block. 

constant throughout the run to within the accuracy that can be measured from 
the particle configuration plots. 

All the calculations discussed in this section were done on a CDC 6600 computer. 
The results shown in Fig. 5 and Fig. 7 were processed from the computer by the 
Stromberg Carlson 4020 Microfilm Recorder and were not retouched or altered 
in any way. 
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